/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * *

© Copyright (c) 2021 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include #include #include #include #include #include #include /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define VERBOSE // print debug messages via USART #define VERY_VERBOSE #define I2C_RX 0 #define I2C_TX 1 #define DEVICE_COUNT 5 // FFT things #define START_BIN 3 #define FFT_BINS 512 // Actually usable bins after FFT #define SAMPLE_SIZE (FFT_BINS * 2) #define BUFSIZE (SAMPLE_SIZE * 4) // Audio stuff #define MIC_OFFSET_DB 2 #define MIC_REF_DB 94.0 #define MIC_SENSITIVITY -26 #define MIC_SNR 65 #define MIC_BITS 16 #define MIC_OVERLOAD 120 #define MIC_NOISE_FLOOR (MIC_REF_DB - MIC_SNR) // Power stuff #define DROPOUT_VOLTAGE (3.3 + 0.25) // For a load of approx. 50 mA and LP2950ACZ-3.3G #define BAT_VOLTAGE_CHECK_INTERVAL 60000 // ms #define BAT_VOLTAGE_CHECK_TOLERANCE 500 // ms #define BAT_FIELD_SIZE 1 #define BAT_LOW_THRESHOLD DROPOUT_VOLTAGE - 0.4 // This seems odd but below the drop out voltage, MCU and LoRa will still work #define BAT_MEASUREMENT_CYCLES 10 // Measure over 10 iterations to avoid one-offs. // LoRa stuff #define LORA_SYNC_WORD 0x2AF69A00 #define LORA_TIMEOUT 200 #define LORA_HEADER_LENGTH sizeof(LORA_SYNC_WORD) / 2 // divide by two because we use a uint16_t (2 byte) buffer // just fine (min. 1.8V) so we can go a bit lower for longer battery life. #define LORA_BEACON_SIZE 10 /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ ADC_HandleTypeDef hadc1; DMA_HandleTypeDef hdma_adc1; I2C_HandleTypeDef hi2c2; I2S_HandleTypeDef hi2s1; DMA_HandleTypeDef hdma_spi1_rx; SPI_HandleTypeDef hspi2; TIM_HandleTypeDef htim2; UART_HandleTypeDef huart4; /* USER CODE BEGIN PV */ // TODO CHECK constexpr double MIC_REF_AMPL = pow(10, double(MIC_SENSITIVITY)/20) * (pow(2, (MIC_BITS - 1)) - 1); char msg[64]; uint8_t ret; uint16_t i2s_dma_buf[BUFSIZE]; uint32_t adc_buf[3]; double vReal[SAMPLE_SIZE]; double vImag[SAMPLE_SIZE]; volatile bool adc_ready; volatile uint32_t adc_avg; volatile float bat_voltage_avg; bool got_i2c_setup_message; volatile bool got_beacon; volatile bool flip_buffer; volatile bool tx_due; volatile uint8_t adc_counter; volatile uint8_t tick_count = LORA_HEADER_LENGTH; uint8_t verbosity; uint8_t i2c_tx_counter; uint16_t lora_beacon_rx_buffer[5]; uint16_t i2c_tx_buffer[1024]; uint16_t first_sync_message[5]; // Capitalized means "const" but we cannot make them real const as that doesn't work with the protcol. uint8_t PACKET_LENGTH; uint8_t LORA_PACKET_SIZE; uint16_t TX_OFFSET; uint16_t TICK_COUNT; uint16_t measured_values1[63]; // TODO uint16_t measured_values2[63]; uint32_t TICK_DURATION_US; volatile uint8_t device_id; char i2c_rx_buffer[4]; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_ADC1_Init(void); static void MX_I2S1_Init(void); static void MX_SPI2_Init(void); static void MX_I2C2_Init(void); static void MX_USART4_UART_Init(void); static void MX_TIM2_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ SX1278_hw_t SX1278_hw; SX1278_t SX1278; void PrintVector(double *vData, uint16_t bufferSize, uint8_t scaleType) { for (uint16_t i = 0; i < bufferSize; i++) // First two bins are not meaningful. { char buf[10]; char buf2[bufferSize]; double abscissa; /* Print abscissa value */ switch (scaleType) { case 0: abscissa = (i * 1.0); break; case 1: abscissa = ((i * 1.0) / hi2s1.Init.AudioFreq); break; case 2: abscissa = ((i * 1.0 * hi2s1.Init.AudioFreq) / SAMPLE_SIZE); break; default: break; } sprintf(buf, "%.4f", abscissa); HAL_UART_Transmit(&huart4, (uint8_t *) buf, strlen(buf), 100); if(scaleType==2) { HAL_UART_Transmit(&huart4, (uint8_t *) " Hz", 3, 100); } HAL_UART_Transmit(&huart4, (uint8_t *) " ", 1, 100); sprintf(buf2, "%.4f, %.4f dB\n", vData[i], (20 * log10(vData[i]))); HAL_UART_Transmit(&huart4, (uint8_t *) buf2, strlen(buf2), 100); } HAL_UART_Transmit(&huart4, (uint8_t *) "\n", 1, 100); } /** * Helper function to split the LoRa sync word from the device ID in a LoRa message. */ _Bool IsOwnLoraPacket(uint16_t *buf) { if (buf[0] == (LORA_SYNC_WORD >> 16) && (buf[1] & 0xff00) == (uint16_t) (LORA_SYNC_WORD) ) { return 1; } return 0; } uint8_t GetDeviceId(uint16_t *buf) { return (buf[1] & 0x00ff); } /* * Do FFT on the filled arrays, calculate RMS and return the A-weighted dB value. */ uint16_t GetDBA(double *vReal, double *vImag) { arduinoFFT fft = arduinoFFT(vReal, vImag, SAMPLE_SIZE, hi2s1.Init.AudioFreq); fft.Windowing(FFT_WIN_TYP_HANN, FFT_FORWARD); fft.Compute(FFT_FORWARD); fft.ComplexToMagnitude(); double squared_sum = 0; for (uint16_t i = START_BIN; i < FFT_BINS; i++) { squared_sum += (pow(vReal[i], 2) * CORRECTION_VALUES[i]); // Parseval's Theorem } double rms = 1.63 * sqrt(2.0 * squared_sum / (SAMPLE_SIZE * SAMPLE_SIZE)); // https://de.mathworks.com/matlabcentral/answers/372516-calculate-windowing-correction-factor double dbA = MIC_OFFSET_DB + MIC_REF_DB + 20 * log10(rms / MIC_REF_AMPL); // We can't measure below that as the noise from the microphone is louder than the ambient sound itself. if (dbA <= MIC_NOISE_FLOOR) { dbA = MIC_NOISE_FLOOR; } else if (dbA >= MIC_OVERLOAD) { dbA = MIC_OVERLOAD; } return (dbA * 10); // Make a fixed point from the double. Give us one decimal point of precision which is plenty. } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_ADC1_Init(); MX_I2S1_Init(); MX_SPI2_Init(); MX_I2C2_Init(); MX_USART4_UART_Init(); MX_TIM2_Init(); /* USER CODE BEGIN 2 */ #ifdef VERBOSE verbosity = 1; #endif #ifdef VERY_VERBOSE verbosity = 2; #endif //SX1278_hw.dio0.port = DIO0_GPIO_Port; //SX1278_hw.dio0.pin = DIO0_; SX1278_hw.dio0.port = GPIOB; SX1278_hw.dio0.pin = GPIO_PIN_0; SX1278_hw.nss.port = NSS_GPIO_Port; SX1278_hw.nss.pin = NSS_Pin; SX1278_hw.reset.port = RESET_GPIO_Port; SX1278_hw.reset.pin = RESET_Pin; SX1278_hw.spi = &hspi2; SX1278.hw = &SX1278_hw; SX1278_init(&SX1278, 866000000, SX1278_POWER_14DBM, SX1278_LORA_SF_8, SX1278_LORA_BW_250KHZ, SX1278_LORA_CR_4_5, SX1278_LORA_CRC_EN, 60); HAL_I2S_Receive_DMA(&hi2s1, (uint16_t *) i2s_dma_buf, BUFSIZE/2); // This would work just fine without DMA but multiple channels don't work in polling mode. HAL_TIM_Base_Start(&htim2); HAL_ADC_Start_DMA(&hadc1, adc_buf, hadc1.Init.NbrOfConversion); while (!adc_ready); adc_ready = 0; HAL_ADC_Stop_DMA(&hadc1); uint32_t adc_value = adc_buf[0]; if (verbosity >= 2) { sprintf(msg, "%lu %lu\n", adc_buf[0], adc_buf[1]); HAL_UART_Transmit(&huart4, (uint8_t *) msg, strlen(msg), 100); } if (adc_value <= 400) { // LOW device_id = 4; } else if (adc_value >= 600 && adc_value <= 1400) { // 3V3 -- 10k -- 3k3 -- GND device_id = 1; } else if (adc_value >= 1600 && adc_value <= 2400) { // 3V3 -- 10k -- 10k -- GND device_id = 2; } else if (adc_value >= 2600 && adc_value <= 3400) { // 3V3 -- 10k -- 33k -- GND device_id = 3; } else if (adc_value >= 3600) { // HIGH device_id = 0; // Master HAL_I2C_EnableListen_IT(&hi2c2); } if (device_id == 0) { while (!got_i2c_setup_message) { HAL_UART_Transmit(&huart4, (uint8_t *) "wait for i2c\n", 13, 100); } got_i2c_setup_message = 0; TICK_COUNT = i2c_rx_buffer[1]; TICK_DURATION_US = i2c_rx_buffer[2] * 1000000; // Seconds to µs. TX_OFFSET = i2c_rx_buffer[3]; // In ticks PACKET_LENGTH = (TICK_COUNT + LORA_HEADER_LENGTH + BAT_FIELD_SIZE); LORA_PACKET_SIZE = PACKET_LENGTH * 2; first_sync_message[0] = (uint16_t) (LORA_SYNC_WORD >> 16); first_sync_message[1] = (uint16_t) (LORA_SYNC_WORD | device_id); first_sync_message[2] = TICK_COUNT; // Tick count first_sync_message[3] = i2c_rx_buffer[2]; // Tick duration first_sync_message[4] = TX_OFFSET; // Tx offset if (verbosity >= 1) { sprintf(msg, "tc: %u, td: %u, tx_offs: %u\n", first_sync_message[2], i2c_rx_buffer[2], first_sync_message[4]); HAL_UART_Transmit(&huart4, (uint8_t *) msg, strlen(msg), 100); } } uint16_t lora_rx_buffer[PACKET_LENGTH]; if (verbosity >= 1) { sprintf(msg, "My device ID is %u\n", device_id); HAL_UART_Transmit(&huart4, (uint8_t *) msg, strlen(msg), 100); } /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { // Master if (device_id == 0) { __HAL_TIM_SET_COUNTER(&htim2, 0); // Send a sync beacon at the start of every "period". if (tick_count == 2) { SX1278_LoRaEntryTx(&SX1278, LORA_BEACON_SIZE, LORA_TIMEOUT); HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_SET); SX1278_LoRaTxPacket(&SX1278, (uint8_t *) &first_sync_message, LORA_BEACON_SIZE, LORA_TIMEOUT); //SX1278_LoRaTxPacket(&SX1278, (uint8_t *) &measured_values1, 4, LORA_TIMEOUT); HAL_UART_Transmit(&huart4, (uint8_t *) first_sync_message, LORA_BEACON_SIZE, 100); if (verbosity >= 1) { HAL_UART_Transmit(&huart4, (uint8_t *) "\nsent beacon\n", 13, 100); } else if (verbosity >= 2) { HAL_UART_Transmit(&huart4, (uint8_t *) first_sync_message, 10, 100); } HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_RESET); // Change back to Rx again. SX1278_LoRaEntryRx(&SX1278, LORA_PACKET_SIZE, LORA_TIMEOUT); } for (volatile uint16_t i = 0; i < BUFSIZE; i += 4) { vReal[i/4] = abs(65535 - i2s_dma_buf[i]); vImag[i/4] = 0; } // For the master, one buffer is enough. No need to flip. measured_values1[tick_count] = GetDBA(vReal, vImag); if (verbosity >= 2) { sprintf(msg, "fill array %u\n", tick_count); HAL_UART_Transmit(&huart4, (uint8_t *) msg, strlen(msg), 100); } //sprintf(msg, "array[%u]: %u\n", tick_count, i2c_tx_buffer[tick_count]); //HAL_UART_Transmit(&huart4, (uint8_t *) msg, strlen(msg), 100); tick_count++; if (tick_count == PACKET_LENGTH - BAT_FIELD_SIZE) { // Last measurement, now wait for I²C bool debug_sent = 0; while (!got_i2c_setup_message) { if (verbosity >= 1 && !debug_sent) { HAL_UART_Transmit(&huart4, (uint8_t *) "Waiting for I2C\n", 16, 100); debug_sent = 1; } } if (verbosity >= 1) { HAL_UART_Transmit(&huart4, (uint8_t *) "Got I2C sync\n", 13, 100); } memcpy(&i2c_tx_buffer[0], &measured_values1, LORA_PACKET_SIZE); TICK_COUNT = i2c_rx_buffer[1]; TICK_DURATION_US = i2c_rx_buffer[2] * 1000000; // Seconds to µs. TX_OFFSET = i2c_rx_buffer[3]; // In ticks PACKET_LENGTH = (TICK_COUNT + LORA_HEADER_LENGTH + BAT_FIELD_SIZE); LORA_PACKET_SIZE = PACKET_LENGTH * 2; first_sync_message[0] = (uint16_t) (LORA_SYNC_WORD >> 16); first_sync_message[1] = (uint16_t) (LORA_SYNC_WORD | device_id); first_sync_message[2] = TICK_COUNT; // Tick count first_sync_message[3] = i2c_rx_buffer[2]; // Tick duration first_sync_message[4] = TX_OFFSET; // Tx offset got_i2c_setup_message = 0; tick_count = LORA_HEADER_LENGTH; sprintf(msg, "tickcountreset %u, gotmsg %u\n", tick_count, got_i2c_setup_message); HAL_UART_Transmit(&huart4, (uint8_t *) msg, strlen(msg), 100); } else { while (__HAL_TIM_GET_COUNTER(&htim2) < TICK_DURATION_US) { ret = SX1278_LoRaRxPacket(&SX1278); // Only accept packages within our expected length to avoid buffer overflows. if (ret > 0 && ret <= LORA_PACKET_SIZE) { memset(lora_rx_buffer, 0, sizeof lora_rx_buffer); SX1278_read(&SX1278, (uint8_t*) lora_rx_buffer, LORA_PACKET_SIZE); if (IsOwnLoraPacket(lora_rx_buffer)) { HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_SET); uint8_t devid = GetDeviceId(lora_rx_buffer); memcpy(&i2c_tx_buffer[devid * PACKET_LENGTH], &lora_rx_buffer, LORA_PACKET_SIZE); if (verbosity >= 1) { sprintf(msg, "Rx %u bytes: ", sizeof(lora_rx_buffer)); HAL_UART_Transmit(&huart4, (uint8_t *) msg, strlen(msg), 100); HAL_UART_Transmit(&huart4, (uint8_t *) lora_rx_buffer, LORA_PACKET_SIZE, 100); HAL_UART_Transmit(&huart4, (uint8_t *) "\n", 1, 100); } HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_RESET); break; // No need to check again as no two Rx can happen within one tick. } } } } while (__HAL_TIM_GET_COUNTER(&htim2) < TICK_DURATION_US) { // Just wait. } } else { if (!got_beacon) { SX1278_LoRaEntryRx(&SX1278, 4, LORA_TIMEOUT); } while (!got_beacon) { ret = SX1278_LoRaRxPacket(&SX1278); if (verbosity >= 2) { HAL_UART_Transmit(&huart4, (uint8_t *) "awaiting beacon\n", 16, 100); } if (ret > 0 && ret <= LORA_BEACON_SIZE) { HAL_UART_Transmit(&huart4, (uint8_t *) lora_beacon_rx_buffer, LORA_BEACON_SIZE, 100); SX1278_read(&SX1278, (uint8_t*) lora_beacon_rx_buffer, LORA_BEACON_SIZE); // Beacons only come from the master (device_id == 0) if (IsOwnLoraPacket(lora_beacon_rx_buffer) && GetDeviceId(lora_beacon_rx_buffer) == 0) { TICK_COUNT = lora_beacon_rx_buffer[2]; TICK_DURATION_US = lora_beacon_rx_buffer[3] * 1000000; TX_OFFSET = lora_beacon_rx_buffer[4]; PACKET_LENGTH = (TICK_COUNT + LORA_HEADER_LENGTH + BAT_FIELD_SIZE); LORA_PACKET_SIZE = PACKET_LENGTH * 2; got_beacon = 1; if (verbosity >= 2) { sprintf(msg, "tc: %u, td: %lu, offs: %u\n", TICK_COUNT, TICK_DURATION_US, TX_OFFSET); HAL_UART_Transmit(&huart4, (uint8_t *) msg, strlen(msg), 100); HAL_UART_Transmit(&huart4, (uint8_t *) lora_beacon_rx_buffer, LORA_BEACON_SIZE, 100); HAL_UART_Transmit(&huart4, (uint8_t *) "\n", 1, 100); } break; } } HAL_Delay(150); // Going at full throttle just pisses away power. } sprintf(msg, "tc: %u, td: %lu, offs: %u\n", TICK_COUNT, TICK_DURATION_US, TX_OFFSET); HAL_UART_Transmit(&huart4, (uint8_t *) msg, strlen(msg), 100); // Use the first 4 bytes as LoRa sync word and device ID. measured_values1[0] = (uint16_t) (LORA_SYNC_WORD >> 16); measured_values2[0] = (uint16_t) (LORA_SYNC_WORD >> 16); measured_values1[1] = (uint16_t) (LORA_SYNC_WORD | device_id); measured_values2[1] = (uint16_t) (LORA_SYNC_WORD | device_id); // Battery state. measured_values1[PACKET_LENGTH - 1] = 0x0000; measured_values2[PACKET_LENGTH - 1] = 0x0000; __HAL_TIM_SET_COUNTER(&htim2, 0); // TICK_COUNT / 2 avoids measurement during Tx which drops the voltage a fair bit. if (device_id != 0 && tick_count == (TICK_COUNT / 2)) { HAL_ADC_Start_DMA(&hadc1, adc_buf, hadc1.Init.NbrOfConversion); while (!adc_ready); adc_ready = 0; HAL_ADC_Stop_DMA(&hadc1); adc_avg += adc_buf[1]; adc_counter++; if (adc_counter == BAT_MEASUREMENT_CYCLES) { HAL_ADCEx_Calibration_Start(&hadc1); // As per data sheet this needs to happen while the ADC is not running. uint32_t cal = HAL_ADCEx_Calibration_GetValue(&hadc1) / 2; // Returns an offset we add to the measurement later on. adc_avg /= adc_counter; bat_voltage_avg = ((adc_avg + cal) * 1.212 / adc_buf[2]) * 2; // 1.212 is the VREFINT voltage as per data sheet. if (verbosity >= 2) { sprintf(msg, "V_BAT: %.4f, ADC: %lu\n", bat_voltage_avg, adc_avg); HAL_UART_Transmit(&huart4, (uint8_t *) msg, strlen(msg), 100); } if (bat_voltage_avg <= DROPOUT_VOLTAGE) { measured_values1[PACKET_LENGTH - BAT_FIELD_SIZE] = 0xffff; measured_values2[PACKET_LENGTH - BAT_FIELD_SIZE] = 0xffff; if (verbosity >= 1) { sprintf(msg, "V_BAT: %.3f V below %.3f V, flipped battery bits\n", bat_voltage_avg, BAT_LOW_THRESHOLD); HAL_UART_Transmit(&huart4, (uint8_t *) msg, strlen(msg), 100); } } bat_voltage_avg = 0; adc_avg = 0; adc_counter = 0; } } if (verbosity >= 2) { sprintf(msg, "tc: %u, tx_due: %u\n", tick_count, tx_due); HAL_UART_Transmit(&huart4, (uint8_t *) msg, strlen(msg), 100); } // Wait for device ID times offset with sending to avoid overlapping transmissions at the master node. if ( tx_due && tick_count == (LORA_HEADER_LENGTH - 1 + (device_id * TX_OFFSET)) ) { //HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_SET); if (flip_buffer) { SX1278_LoRaTxPacket(&SX1278, (uint8_t *) &measured_values1, LORA_PACKET_SIZE, LORA_TIMEOUT); if (verbosity >= 1) { HAL_UART_Transmit(&huart4, (uint8_t *) "sent arr. 1\n", 12, 100); } } else { SX1278_LoRaTxPacket(&SX1278, (uint8_t *) &measured_values2, LORA_PACKET_SIZE, LORA_TIMEOUT); if (verbosity >= 1) { HAL_UART_Transmit(&huart4, (uint8_t *) "sent arr. 2\n", 12, 100); } } //HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_RESET); tx_due = 0; } for (volatile uint16_t i = 0; i < BUFSIZE; i += 4) { vReal[i/4] = abs(65535 - i2s_dma_buf[i]); vImag[i/4] = 0; } // Alternate between two buffers to allow sending while another buffer is being written to. if (flip_buffer) { measured_values2[tick_count] = GetDBA(vReal, vImag); if (verbosity >= 2) { sprintf(msg, "fill array 1: %u\n", tick_count); HAL_UART_Transmit(&huart4, (uint8_t *) msg, strlen(msg), 100); } } else { measured_values1[tick_count] = GetDBA(vReal, vImag); if (verbosity >= 2) { sprintf(msg, "fill array 1: %u\n", tick_count); HAL_UART_Transmit(&huart4, (uint8_t *) msg, strlen(msg), 100); } } // One tick before expecting the sync beacon we switch to Rx. We could've done this earlier // but keeping the LoRa module in Rx mode uses up a lot of power. if (tick_count == ( PACKET_LENGTH - BAT_FIELD_SIZE - 2 ) ) { SX1278_LoRaEntryRx(&SX1278, 4, LORA_TIMEOUT); if (verbosity >= 2) { HAL_UART_Transmit(&huart4, (uint8_t *) "switch to rx\n", 13, 100); } } tick_count++; // TODO This could probably be done in the while !beacon loop. // TODO Update setup values should they change. // All measurements are done and we're waiting for the sync beacon to start the cycle again. while ( __HAL_TIM_GET_COUNTER(&htim2) < (TICK_DURATION_US) || tick_count == (PACKET_LENGTH - BAT_FIELD_SIZE ) ) { ret = SX1278_LoRaRxPacket(&SX1278); if (ret > 0 && ret <= LORA_BEACON_SIZE) { memset(lora_beacon_rx_buffer, 0, sizeof lora_beacon_rx_buffer); SX1278_read(&SX1278, (uint8_t*) lora_beacon_rx_buffer, LORA_BEACON_SIZE); if (verbosity >= 2) { HAL_UART_Transmit(&huart4, (uint8_t *) lora_beacon_rx_buffer, sizeof(lora_beacon_rx_buffer), 100); } // Beacons only come from the master (device_id == 0) if (IsOwnLoraPacket(lora_beacon_rx_buffer) && GetDeviceId(lora_beacon_rx_buffer) == 0) { if (verbosity >= 1) { HAL_UART_Transmit(&huart4, (uint8_t *) "rx beacon\n", 10, 100); } flip_buffer ^= 1; // Flip the flip_buffer bit. tick_count = LORA_HEADER_LENGTH; uint8_t new_tick_count = lora_beacon_rx_buffer[2]; uint32_t new_tick_duration = lora_beacon_rx_buffer[3] * 1000000; uint8_t new_tx_offset = lora_beacon_rx_buffer[4]; // If one of these values changes, don't send the last packet as it's not adhering to the new parameters anymore. if (new_tick_count != TICK_COUNT || new_tick_duration != TICK_DURATION_US || new_tx_offset != TX_OFFSET) { tx_due = 0; HAL_UART_Transmit(&huart4, (uint8_t *) "values changed, don't send\n", 27, 100); } else { tx_due = 1; } if (verbosity >= 2) { HAL_UART_Transmit(&huart4, (uint8_t *) "flip\n", 6, 100); } TICK_COUNT = new_tick_count; TICK_DURATION_US = new_tick_duration; TX_OFFSET = new_tx_offset; PACKET_LENGTH = (TICK_COUNT + LORA_HEADER_LENGTH + BAT_FIELD_SIZE); LORA_PACKET_SIZE = PACKET_LENGTH * 2; HAL_UART_Transmit(&huart4, (uint8_t *) "\n", 1, 100); while (__HAL_TIM_GET_COUNTER(&htim2) < (TICK_DURATION_US)); // Some µs might be left. // Switch back to Tx right here as it saves power. SX1278_entryLoRa(&SX1278); SX1278_LoRaEntryTx(&SX1278, LORA_PACKET_SIZE, LORA_TIMEOUT); break; } } } } /* } */ /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInit = {0}; /** Configure the main internal regulator output voltage */ HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSIDiv = RCC_HSI_DIV1; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } /** Initializes the peripherals clocks */ PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_I2S1|RCC_PERIPHCLK_ADC; PeriphClkInit.I2s1ClockSelection = RCC_I2S1CLKSOURCE_SYSCLK; PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_SYSCLK; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } } /** * @brief ADC1 Initialization Function * @param None * @retval None */ static void MX_ADC1_Init(void) { /* USER CODE BEGIN ADC1_Init 0 */ /* USER CODE END ADC1_Init 0 */ ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC1_Init 1 */ /* USER CODE END ADC1_Init 1 */ /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */ hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE; hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc1.Init.LowPowerAutoWait = DISABLE; hadc1.Init.LowPowerAutoPowerOff = DISABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.NbrOfConversion = 3; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc1.Init.DMAContinuousRequests = ENABLE; hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED; hadc1.Init.SamplingTimeCommon1 = ADC_SAMPLETIME_1CYCLE_5; hadc1.Init.SamplingTimeCommon2 = ADC_SAMPLETIME_1CYCLE_5; hadc1.Init.OversamplingMode = DISABLE; hadc1.Init.TriggerFrequencyMode = ADC_TRIGGER_FREQ_HIGH; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_2; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLINGTIME_COMMON_1; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_9; sConfig.Rank = ADC_REGULAR_RANK_2; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_VREFINT; sConfig.Rank = ADC_REGULAR_RANK_3; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC1_Init 2 */ /* USER CODE END ADC1_Init 2 */ } /** * @brief I2C2 Initialization Function * @param None * @retval None */ static void MX_I2C2_Init(void) { /* USER CODE BEGIN I2C2_Init 0 */ /* USER CODE END I2C2_Init 0 */ /* USER CODE BEGIN I2C2_Init 1 */ /* USER CODE END I2C2_Init 1 */ hi2c2.Instance = I2C2; hi2c2.Init.Timing = 0x0010061A; hi2c2.Init.OwnAddress1 = 120; hi2c2.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c2.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c2.Init.OwnAddress2 = 0; hi2c2.Init.OwnAddress2Masks = I2C_OA2_NOMASK; hi2c2.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c2.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; if (HAL_I2C_Init(&hi2c2) != HAL_OK) { Error_Handler(); } /** Configure Analogue filter */ if (HAL_I2CEx_ConfigAnalogFilter(&hi2c2, I2C_ANALOGFILTER_ENABLE) != HAL_OK) { Error_Handler(); } /** Configure Digital filter */ if (HAL_I2CEx_ConfigDigitalFilter(&hi2c2, 0) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN I2C2_Init 2 */ if (HAL_GPIO_ReadPin(I2C_Address_GPIO_Port, I2C_Address_Pin) == GPIO_PIN_SET) { // Jumper open, internal pull up hi2c2.Init.OwnAddress1 = 120; } else { // Jumper closed, pulled to GND hi2c2.Init.OwnAddress1 = 122; } if (HAL_I2C_Init(&hi2c2) != HAL_OK) { Error_Handler(); } /* USER CODE END I2C2_Init 2 */ } /** * @brief I2S1 Initialization Function * @param None * @retval None */ static void MX_I2S1_Init(void) { /* USER CODE BEGIN I2S1_Init 0 */ /* USER CODE END I2S1_Init 0 */ /* USER CODE BEGIN I2S1_Init 1 */ /* USER CODE END I2S1_Init 1 */ hi2s1.Instance = SPI1; hi2s1.Init.Mode = I2S_MODE_MASTER_RX; hi2s1.Init.Standard = I2S_STANDARD_PHILIPS; hi2s1.Init.DataFormat = I2S_DATAFORMAT_24B; hi2s1.Init.MCLKOutput = I2S_MCLKOUTPUT_DISABLE; hi2s1.Init.AudioFreq = I2S_AUDIOFREQ_22K; hi2s1.Init.CPOL = I2S_CPOL_LOW; if (HAL_I2S_Init(&hi2s1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN I2S1_Init 2 */ /* USER CODE END I2S1_Init 2 */ } /** * @brief SPI2 Initialization Function * @param None * @retval None */ static void MX_SPI2_Init(void) { /* USER CODE BEGIN SPI2_Init 0 */ /* USER CODE END SPI2_Init 0 */ /* USER CODE BEGIN SPI2_Init 1 */ /* USER CODE END SPI2_Init 1 */ /* SPI2 parameter configuration*/ hspi2.Instance = SPI2; hspi2.Init.Mode = SPI_MODE_MASTER; hspi2.Init.Direction = SPI_DIRECTION_2LINES; hspi2.Init.DataSize = SPI_DATASIZE_8BIT; hspi2.Init.CLKPolarity = SPI_POLARITY_LOW; hspi2.Init.CLKPhase = SPI_PHASE_1EDGE; hspi2.Init.NSS = SPI_NSS_SOFT; hspi2.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2; hspi2.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi2.Init.TIMode = SPI_TIMODE_DISABLE; hspi2.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; hspi2.Init.CRCPolynomial = 7; hspi2.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE; hspi2.Init.NSSPMode = SPI_NSS_PULSE_ENABLE; if (HAL_SPI_Init(&hspi2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN SPI2_Init 2 */ /* USER CODE END SPI2_Init 2 */ } /** * @brief TIM2 Initialization Function * @param None * @retval None */ static void MX_TIM2_Init(void) { /* USER CODE BEGIN TIM2_Init 0 */ /* USER CODE END TIM2_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM2_Init 1 */ /* USER CODE END TIM2_Init 1 */ htim2.Instance = TIM2; htim2.Init.Prescaler = 16-1; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 4294967295; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim2) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM2_Init 2 */ /* USER CODE END TIM2_Init 2 */ } /** * @brief USART4 Initialization Function * @param None * @retval None */ static void MX_USART4_UART_Init(void) { /* USER CODE BEGIN USART4_Init 0 */ /* USER CODE END USART4_Init 0 */ /* USER CODE BEGIN USART4_Init 1 */ /* USER CODE END USART4_Init 1 */ huart4.Instance = USART4; huart4.Init.BaudRate = 115200; huart4.Init.WordLength = UART_WORDLENGTH_8B; huart4.Init.StopBits = UART_STOPBITS_1; huart4.Init.Parity = UART_PARITY_NONE; huart4.Init.Mode = UART_MODE_TX; huart4.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart4.Init.OverSampling = UART_OVERSAMPLING_16; huart4.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart4.Init.ClockPrescaler = UART_PRESCALER_DIV1; huart4.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart4) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART4_Init 2 */ /* USER CODE END USART4_Init 2 */ } /** * Enable DMA controller clock */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMA1_CLK_ENABLE(); /* DMA interrupt init */ /* DMA1_Channel1_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn); /* DMA1_Channel2_3_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel2_3_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel2_3_IRQn); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(NSS_GPIO_Port, NSS_Pin, GPIO_PIN_SET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOA, LED_Pin|RESET_Pin, GPIO_PIN_RESET); /*Configure GPIO pins : NSS_Pin LED_Pin RESET_Pin */ GPIO_InitStruct.Pin = NSS_Pin|LED_Pin|RESET_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pin : PB0 */ GPIO_InitStruct.Pin = GPIO_PIN_0; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pin : I2C_Address_Pin */ GPIO_InitStruct.Pin = I2C_Address_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(I2C_Address_GPIO_Port, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode) { HAL_I2C_DisableListen_IT(hi2c); if (TransferDirection == I2C_TX) { HAL_I2C_Slave_Transmit_IT(hi2c, (uint8_t *) &i2c_tx_buffer[i2c_tx_counter * PACKET_LENGTH], LORA_PACKET_SIZE); i2c_tx_counter++; } else if (TransferDirection == I2C_RX) { HAL_I2C_Slave_Receive_IT(hi2c, (uint8_t *) i2c_rx_buffer, sizeof(i2c_rx_buffer)); // The Arduino lib sends an extra byte in the beginning. } } void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *hi2c) { if (i2c_tx_counter == DEVICE_COUNT) { i2c_tx_counter = 0; memset(i2c_tx_buffer, 0, sizeof i2c_tx_buffer); } HAL_I2C_EnableListen_IT(hi2c); } void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *hi2c) { got_i2c_setup_message = 1; HAL_I2C_EnableListen_IT(hi2c); } void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) { adc_ready = 1; } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/