/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * *

© Copyright (c) 2021 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "string.h" #include "stdio.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define TIMEBASE 1000 #define PWM_MINIMUM 20 /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ TIM_HandleTypeDef htim2; UART_HandleTypeDef huart2; /* USER CODE BEGIN PV */ const uint16_t GPU_STAGES[] = {900, 1400, 1800, 2200}; const uint16_t CPU_STAGES[] = {850, 900, 1000, 1200}; uint32_t freq_count_gpu; uint32_t freq_count_cpu; uint32_t freq_count_case1; uint32_t freq_count_case2; uint32_t last_gpu; uint32_t last_cpu; uint32_t last_case1; uint32_t last_case2; uint16_t rpm_gpu; uint16_t rpm_cpu; uint16_t rpm_case1; uint16_t rpm_case2; uint32_t pwm_fan1; uint32_t pwm_fan2; uint8_t gpu_stage; uint8_t cpu_stage; uint8_t current_stage; char msg[256]; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_TIM2_Init(void); static void MX_USART2_UART_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ int max(uint8_t a, uint8_t b) { if (a > b) { return a; } return b; } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_TIM2_Init(); MX_USART2_UART_Init(); /* USER CODE BEGIN 2 */ HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_2); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { if (HAL_GPIO_ReadPin(Switch_GPIO_Port, Switch_Pin) == GPIO_PIN_SET) { // do stuff } if (rpm_gpu < GPU_STAGES[0]) { gpu_stage = 1; } else if (rpm_gpu < GPU_STAGES[1]) { gpu_stage = 2; } else if (rpm_gpu < GPU_STAGES[2]) { gpu_stage = 3; } else if (rpm_gpu < GPU_STAGES[3]) { gpu_stage = 4; } else { gpu_stage = 5; } if (rpm_cpu < CPU_STAGES[0]) { cpu_stage = 1; } else if (rpm_cpu < CPU_STAGES[1]) { cpu_stage = 2; } else if (rpm_cpu < CPU_STAGES[2]) { cpu_stage = 3; } else if (rpm_cpu < CPU_STAGES[3]) { cpu_stage = 4; } else { cpu_stage = 5; } current_stage = max(gpu_stage, cpu_stage); if (current_stage == 1) { pwm_fan1 = PWM_MINIMUM; } else if (current_stage == 2) { pwm_fan1 = 35; } else if (current_stage == 3) { pwm_fan1 = 50; } else if (current_stage == 4) { pwm_fan1 = 80; } else { pwm_fan1 = 100; } // For now pwm_fan2 = pwm_fan1; // Write the value after converting from duty cycle to raw value. TIM2->CCR1 = htim2.Init.Period * pwm_fan1 / 100; TIM2->CCR2 = htim2.Init.Period * pwm_fan2 / 100; // If the fans don't spin, the rpm won't be updated as no // interrupts are called. This resets those values every two seconds. if (HAL_GetTick() - last_gpu >= TIMEBASE * 2) { rpm_gpu = 0; freq_count_gpu = 0; } if (HAL_GetTick() - last_cpu >= TIMEBASE * 2) { rpm_cpu = 0; freq_count_cpu = 0; } if (HAL_GetTick() - last_case1 >= TIMEBASE * 2) { rpm_case1 = 0; freq_count_case1 = 0; } if (HAL_GetTick() - last_case2 >= TIMEBASE * 2) { rpm_case2 = 0; freq_count_case2 = 0; } sprintf(msg, "GPU: %u RPM\nCPU: %u RPM\nCase 1: %u RPM\nCase2: %u RPM\n", rpm_gpu, rpm_cpu, rpm_case1, rpm_case2); HAL_UART_Transmit(&huart2, (uint8_t *) msg, strlen(msg), 100); sprintf(msg, "PWM Case 1: %lu %%\nPWM Case 2: %lu %%\n\n", pwm_fan1, pwm_fan2); HAL_UART_Transmit(&huart2, (uint8_t *) msg, strlen(msg), 100); HAL_Delay(1000); /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSIDiv = RCC_HSI_DIV1; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } /** * @brief TIM2 Initialization Function * @param None * @retval None */ static void MX_TIM2_Init(void) { /* USER CODE BEGIN TIM2_Init 0 */ /* USER CODE END TIM2_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; TIM_OC_InitTypeDef sConfigOC = {0}; /* USER CODE BEGIN TIM2_Init 1 */ /* USER CODE END TIM2_Init 1 */ htim2.Instance = TIM2; htim2.Init.Prescaler = 0; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 640; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; if (HAL_TIM_Base_Init(&htim2) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_Init(&htim2) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) { Error_Handler(); } sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM2_Init 2 */ /* USER CODE END TIM2_Init 2 */ HAL_TIM_MspPostInit(&htim2); } /** * @brief USART2 Initialization Function * @param None * @retval None */ static void MX_USART2_UART_Init(void) { /* USER CODE BEGIN USART2_Init 0 */ /* USER CODE END USART2_Init 0 */ /* USER CODE BEGIN USART2_Init 1 */ /* USER CODE END USART2_Init 1 */ huart2.Instance = USART2; huart2.Init.BaudRate = 115200; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1; huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART2_Init 2 */ /* USER CODE END USART2_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pins : Case1_Pin Case2_Pin CPU_Pin GPU_Pin */ GPIO_InitStruct.Pin = Case1_Pin|Case2_Pin|CPU_Pin|GPU_Pin; GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pin : Switch_Pin */ GPIO_InitStruct.Pin = Switch_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLDOWN; HAL_GPIO_Init(Switch_GPIO_Port, &GPIO_InitStruct); /* EXTI interrupt init*/ HAL_NVIC_SetPriority(EXTI4_15_IRQn, 0, 0); HAL_NVIC_EnableIRQ(EXTI4_15_IRQn); } /* USER CODE BEGIN 4 */ void HAL_GPIO_EXTI_Rising_Callback(uint16_t GPIO_Pin) { if (GPIO_Pin == GPU_Pin) { if ((HAL_GetTick() - last_gpu) <= TIMEBASE) { freq_count_gpu++; } else { rpm_gpu = freq_count_gpu * 60 / 2; last_gpu = HAL_GetTick(); freq_count_gpu = 0; } } if (GPIO_Pin == CPU_Pin) { if ((HAL_GetTick() - last_cpu) <= TIMEBASE) { freq_count_cpu++; } else { rpm_cpu = freq_count_cpu * 60 / 2; last_cpu = HAL_GetTick(); freq_count_cpu = 0; } } if (GPIO_Pin == Case1_Pin) { if ((HAL_GetTick() - last_case1) <= TIMEBASE) { freq_count_case1++; } else { rpm_case1 = freq_count_case1 * 60 / 2; last_case1 = HAL_GetTick(); freq_count_case1 = 0; } } if (GPIO_Pin == Case2_Pin) { if ((HAL_GetTick() - last_case2) <= TIMEBASE) { freq_count_case2++; } else { rpm_case2 = freq_count_case2 * 60 / 2; last_case2 = HAL_GetTick(); freq_count_case2 = 0; } } } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/